
UGENE
User-interface GENeration Engine

IMPLEMENTATION
USER MANUAL

Authors

Jonathan Benn
Leon McKernan-Milon

Page 2 of 20

TABLE OF CONTENTS

1 READING THIS DOCUMENT .. 3
1.1 AUDIENCE.. 3
1.2 DEFINITIONS, ABBREVIATIONS AND ACRONYMS ... 3
1.3 A NOTE ABOUT FONTS .. 3

2 IMPLEMENTATION .. 4
2.1 IMPLEMENTATION STRATEGY .. 4
2.2 VIEW.. 5

Figure 1: View Class Diagram... 6
2.2.1 View Design Considerations... 6
2.2.2 UI Widget Architecture ... 7

2.3 CONTROLLER ... 8
2.4 MODEL... 9
2.5 USEFUL INFORMATION FOR MAINTAINERS .. 9
2.6 PROBLEMS ENCOUNTERED... 9
2.7 PROJECT ASSESSMENT ... 10
2.8 CODING CONVENTION.. 11

2.8.1 Indentation .. 11
2.8.2 Comments.. 12
2.8.3 Header Files.. 12
2.8.4 Temporary Code ... 14
2.8.5 Naming Conventions... 14

3 USER MANUAL... 16
3.1 CREATE APPLICATION.. 16
3.2 CREATE AN API ... 16

3.2.1 Create a CONTROLLER API ... 16
Figure 2: Sample CONTROLLER API ... 17
3.2.2 Create a MODEL API... 17
Figure 3: Sample MODEL API... 18

3.3 CONSTRUCT PANELS .. 18
3.3.1 The Guts of the Panel Configuration File... 18
Figure 4: Sample Panel Configuration File ... 19
3.3.2 Apology Regarding Widget Specifications.. 20

Page 3 of 20

1 Reading This Document

1.1 Audience

We assume that the reader is familiar with common software engineering terminology
and concepts.

1.2 Definitions, Abbreviations and Acronyms

• Application: A software program created using UGENE as a framework. For
example, a computerized card game. Composed of a Back-End, Front-End and
configuration files.

• Back-End: the Application’s underlying logic and data; created by the Developer.
• Client: one of UGENE’s actors; uses the Application.
• Command Pattern: a software design pattern characterized by the separation of

the recognition of the need for a function call, from its execution.
• Developer: one of UGENE’s actors; uses UGENE to create an Application.
• Front-End: the Application’s human-computer interface. This part of the

Application is largely the responsibility of UGENE.
• High-Level Command: a Controller-level function call, encapsulated and sent by

the View, that can invoke functionality inside any of the three MVC modules. Part
of the Command Pattern.

• HLC: High-Level Command.
• MVC: Model-View-Controller.
• Observer-Subscriber Pattern: a software design pattern whereby an Observer

subscribes itself to a Database in order to updated whenever it changes.
• Panel: a distinct view of the model; a screen configuration. In part, it is composed

of a collection of Widgets.
• STL: Standard Template Library.
• UGENE: User-interface GENeration Engine.
• Vector: a dynamic array whose size can change at runtime.
• Widget: a user-interface component that the Client interacts with as part of the

user experience. For example, a button.

1.3 A Note About Fonts

Throughout this document’s text, concepts and/or class collections will be referred to in
capital case (e.g. View), whereas individual classes will be written in all capitals and with
a special font (e.g. VIEW), and functions will be written in a special font (e.g.
SetCurrentPanel).

Page 4 of 20

2 Implementation
This section will discuss UGENE’s detailed design, its implementation strategy, and offer
information useful to UGENE’s maintainers. This section will not cover problems
encountered and their solutions—that will be dealt with in Section 2.6, on page 9.

2.1 Implementation Strategy

From the very first day that we started working on UGENE, we had a prototype. We
began with an old computer graphics project, stripped out the quick & dirty code (which
was a good 80% of the code), and then restructured what was left. This became
UGENE’s initial prototype. At this point in time, it wasn’t able to do much more than
open a window and display a textured rectangle.

Our approach to implementing UGENE could best be described as a critical-first process.
It was neither top-down, bottom-up, nor middle-out. What we did was implement
whatever seemed the most important (i.e. critical) at any given moment. An advantage of
this approach is that whatever is developed first gets tested the most. Hence, our project’s
critical code was getting the most testing, without any extra effort needed.

This critical-first approach was driven by an iterative process. We would modify the
prototype to add new functionality, to refactor our design, or (rarely) to correct a defect.
Once we made a change (and if possible, while we were making the change) we would
rebuild the project and run it. These frequent system tests were an excellent opportunity
to shake out obvious bugs and code deficiencies. We felt that in light of the ease of
performing system tests, we wouldn’t bother with unit tests under most circumstances.
We felt that a pass on the system test meant a pass on the unit test.

To ensure that our code was correct, we instead performed code reviews. Not only did
these allow us to find programming errors, but they also helped us increase our
understanding of the system. Periodically, whenever we were confused, we would assess
our architecture from a high-level perspective in order to understand where we were at
and where we were going.

Altogether, the implementation approach and process were a very successful
combination. In spite of the fact that most of our programmers were very busy people, we
still managed to nearly meet our (admittedly ambitious) goal of reaching Beta by the end
of April, 2004. Most importantly, throughout the process we had constant feedback of our
progress from our prototype. Even though we’re a little behind schedule, we still have an
interesting program to hand in.

Page 5 of 20

2.2 View

In this section, we will take a look under the hood of the View, and see how it is
constructed. To get a high-level understanding of the View, consult the Architecture
Document.

The View contains three subcomponents, as well as a handful of miscellaneous classes.
The subcomponents are:

• User Input-Output Subcomponent
• Widget Subcomponent
• File Input Subcomponent

All of these subcomponents, and those classes that didn’t fit into any group, are
illustrated in Figure 1, and described below. Remember that one of UGENE’s
architectural constraints is that only top-level classes (the MODEL, VIEW, and
CONTROLLER) are allowed to communicate with each other. Hence, all of the classes
inside the View are not allowed to access any class outside of it. Many of them are
connected to the VIEW, however, and thus can communicate indirectly with the rest of
the Application.

• User Input-Output Subcomponent: This group of classes is concerned with
obtaining input from the user, and providing output. The CAMERA, KEYBOARD
and MOUSE classes all use the Singleton design pattern, meaning that there is only
one instance of each of them. FONT and DISPLAY_LIST are used to display text
and images/shapes, respectively.

• Widget Subcomponent: This group of classes is interested in the states of,
transitions of, and feedback provided by UGENE’s user-interface. Each derived
class of UI_WIDGET is a state machine with very specific requirements,
depending on its nature (e.g. a button has different behavioral requirements from a
pop-up list).

• File Input Subcomponent: This class group is concerned with loading and
parsing Panel configuration files.

• FPS (Frame Per Second) Class: Another Singleton class that keeps track of the
Application’s current frame rate and frame interval (the time between frames).
This information is of more than academic interest, as it is used by the CAMERA to
create uniform motion (otherwise motion would be faster on a more powerful
computer).

• MATH_VECTOR: This is a simple custom 3D vector class, used by the CAMERA to
manage positions in 3D space. It could easily, and perhaps should, be replaced by
a library implementation.

Page 6 of 20

Figure 1: View Class Diagram

2.2.1 View Design Considerations

There was a lot of thinking, work and rework that went into the View’s design. Following
is a rough listing of the ideas that went into it:

• The VIEW class must be completely independent of the rendering engine (e.g.
OpenGL). This means that there shouldn’t be any system-dependant code (e.g.
glClear(GL_COLOR_BUFFER_BIT);) inside it. This limits the number of
classes that will need to be modified if we use a new graphics API like Direct3D.
Besides which, the VIEW is very high-level, and doesn’t need to be cluttered by
low-level graphics calls anyway.

• The VIEW should access the FPS class only for displaying the frame per second
rate to the screen.

• The VIEW class should not use DISPLAY_LIST class directly when displaying
images—instead, it should access an IMAGE class, which is a class derived from

Page 7 of 20

UI_WIDGET. Why? Because IMAGE is non-trivial: amongst other things, it can
load data from a file just like any other widget. Using DISPLAY_LIST directly
inside the VIEW would hard-code the images, which is unacceptable.

• Groups of widgets can be enabled or disabled. Disabled widgets do not receive
user input

• In order to determine which widget gets input from the KEYBOARD, the VIEW
keeps track of the active widget. The knowledge of whether or not an object is
active is always held within that object (information expert pattern).

• The VIEW keeps track of groups of widget, to make it easier to enable or disable
them all at the same time.

• UI_WIDGETs are drawn in reverse order, this way widgets that are placed first in
the screen configuration file are drawn last, on top of the others. Of course, this is
only true if the depth buffer is not being used.

2.2.2 UI Widget Architecture

As can be seen in Figure 1 and the Architecture Document, we avoided using inheritance
as much as possible. We only used it once, and even then only for a two-level hierarchy!
Many C++ programmers go inheritance-crazy with their designs and inherit everything
under the sun. However, experienced C++ programmers understand that inheritance is the
strongest form of inter-class coupling, and that it should only be used when absolutely
necessary. The preferred alternative is encapsulation (a “uses” relationship, as opposed to
the “is a” relationship of inheritance).

In the case of the View’s Widgets, inheritance was absolutely necessary. The Object
Factory pattern, which we used to allow dynamic object loading from a Panel
configuration file at runtime, required the use of a base pointer to derived objects. At the
same time, the capability to use the virtual keyword on common functions such as
Update() and Draw() was of great interest. This allowed the VIEW class to deal with
all of the widgets through a base pointer to a UI_WIDGET. Hence, the VIEW was
protected from having any knowledge of how the Widgets functioned.

Despite these obvious benefits of using inheritance, there were still some negative side-
effects. A limitation of the C++ language is that one cannot combine function templates
with virtual functions. This is a silly limitation that makes writing compilers easier, but
makes an implementer’s life more difficult. The result of this is that we were forced to
frequently use strings as a lowest common denominator in communication between the
Controller and View, and the Model and View. This is both inelegant, and potentially
very inefficient. We are still investigating ways to get around this limitation, perhaps by
avoiding using the virtual keyword in certain functions (especially GetAttribute and
SetAttribute). It seems that an advanced programming concept called type lists
might be of help.

Page 8 of 20

2.3 Controller

From an implementation standpoint, and as far as UGENE is concerned, the Controller
has only three responsibilities:

• To update the VIEW and MODEL
• To tell the VIEW to change Panel
• To contain an interface of HLCs

It is assumed that Developers will add whatever functionality they see fit when they
create the Application’s Back-End.

It’s useful to mention the mechanism the CONTROLLER class uses for dispatching High-
Level Commands. But before beginning that, we must first describe what an HLC is. This
is a vector of strings, where the first string is the name of the function, and each string
thereafter is a parameter to the function. For example:

[“SetNumberOfPictures3i”, “15”, “3”, “80”]

Notice the use of a pseudo-Hungarian notation in the function name. This is because
when Developers are writing down functions in the Panel configuration file, it will help
them know how many parameters to give to the function, and of what type each of them
should be.

Here is where things get interesting. You might be asking, “How does this vector of
strings get converted into a function?” The answer is through a concept that we invented
(although others may have come up with the idea independently) called the Function
Factory Pattern. In this pattern, an STL map is created that links strings to function
pointers. This way, if the map is given a string, it can return a function pointer, which can
then be executed. The function called is passed the vector of strings as a parameter, and
since it knows both how many parameters it needs and what their types are, it is in charge
of converting the parameters to the appropriate type and then using them.

There are two functions at work here: InitializeFunctionList and
RunCommand. Here is the order of operations from the Developer’s perspective:

1. The Developer writes custom functions and places them inside the
CONTROLLER. These functions are the High-Level Commands that the
CONTROLLER can understand and execute.

2. The Developer then uses the InitializeFunctionList function to fill in
the Function Factory map’s entries with pointers to the custom functions he or she
wrote.

3. Developers may now write Panel configuration files, using the strings associated
with the CONTROLLER’s functions (e.g. SetNumberOfPictures3i).

4. These strings from the Panel configuration file are then dynamically run by the
CONTROLLER through the RunCommand function, which simply uses the

Page 9 of 20

Function Factory map to match the string to the function pointer, and then calls
the appropriate function.

2.4 Model

Like the CONTROLLER, the MODEL class is quite simple, and is meant to be extended by
the Developer. It uses the same Function Factory Pattern to communicate with the view,
except instead of being called HLCs, its function calls are named Subscriptions, because
they are part of the Observer-Subscriber Pattern. In addition, the VIEW is not allowed to
modify the MODEL, hence all of its subscription functions are declared const. Except for
these minor differences, the idea is exactly the same as for the CONTROLLER, see
Section 2.3 for details.

2.5 Useful Information For Maintainers

Here is a list of some tips the maintainers should keep in mind:

• We used CodeWarrior instead of Microsoft Visual C++ for a reason. CodeWarrior
has a much better compiler, and much better STL support. The
OBJECT_FACTORY class would not compile under MVC++, and we considered
it to be a vital part of the code that had to be included in the final product.

• Using CodeWarrior made porting other libraries into UGENE more difficult,
since they rarely, if ever, included CodeWarrior project files. This is a price we
had to pay for a better compiler.

• Speaking of project files, take very good care of the project file (UGENE.mcp). It
contains a lot of vital information, including all of the project’s .h, .cpp and
.lib files. Plus, it includes the OpenGL libraries and some non-obvious system
library files that are needed by the TEXTURE_FILE class.

• The project directory contains some required .DLL files that must either be in the
same directory as the executable, or in the Windows system folder (the exact
location of which depends on the version of Windows).

• The Requirements and Architecture Documents are the result of a lot of hard
work. Read them carefully, and keep them up to date.

• We’ve deliberately not talked about the UI_WIDGET and derived widgets too
much. This is because they are still in great flux. We will document them as soon
as we understand how best to organize them.

2.6 Problems Encountered

Our major problems were both directly related to the integration of external
libraries into UGENE. This difficulty is precisely why UGENE’s main vision is to not
require Developers to need to do that themselves. We had a few other miscellaneous

Page 10 of 20

problems along the way. The following problem list is ordered from most awful to least
awful:

Integrating libpng: on January 20th, 2004, we began trying to integrate the libpng
library into UGENE. This library would allow us to load the PNG image file format, and
take advantage of its seamless and highly performing transparency functionality. We
failed miserably, and by the month of March we hadn’t made any progress at all, despite
three attempts. The reason why it was so difficult was that we were using a non-standard
and rarely supported compiler: CodeWarrior. Why was a whole other story (it’s simply
much more ANSI compliant than Visual C++). On March 5th Jonathan tasked Johnny El-
Hajj with the job of compiling libpng under CodeWarrior, and by March 16th he had
succeeded. Jonathan integrated his work into UGENE the next day, and we could now
load PNG files.

Fonts in OpenGL: our second major problem with UGENE (which was
chronologically solved before the libpng issue) was with loading text to the screen.
OpenGL has no native capability for text, and in fact it is surprisingly annoying to
implement. It took a lot of research to find a good OpenGL text library that could load
TrueType font files (Freetype), and a middleware solution that would allow us to use it
conveniently (OGLFT). This compilation and integration was accomplished on
December 26th. Over the next few days, Leon was principally involved with using
OGLFT to create the very usable TEXT_BOX class.

The crash bug: soon after our Alpha2 release (around the end of March) we
introduced a mysterious crash bug into UGENE. We had no idea what was causing it. We
(Leon and Jonathan) implemented logging to try to find the problem, and eventually the
problem fixed itself when we refactored the VIEW. We moved the Panel file parsing
code from the VIEW to a new class called PANEL_FILE, and the bug went away. There
are still some crash bugs here and there, but this one was the worst and was taken care of
on April 17th.

Virtual error: we had a major memory leak and memory corruption bug that was
due to a single missing keyword in the UI_WIDGET abstract base class. When Leon had
first made the base class, he had omitted the “virtual” keyword from the destructor. This
meant that derived classes using the base pointer were only being partially deleted.
Jonathan researched inheritance, discovered, and then corrected this problem on March
13th.

2.7 Project Assessment

Overall, the UGENE project has been a success. We initially wanted to reach Beta
status by the end of May 2004, however, we have instead reached a late Alpha stage
(we’re nearly at Alpha3). This is only slight schedule slippage, and in our mind is very
acceptable given the other pressures that each and every one of our developers has been
under during this project’s lifetime.

Page 11 of 20

We have a working prototype, which illustrates a lot of the functionality that
UGENE will have as a finished product. The prototype is reasonably stable, and functions
on all of the modern Windows platforms. It has taken over a year of part-time effort to
reach this point, and given the project’s complexity, it will probably take at least another
year to finish UGENE. At this time, our confidence is very high that UGENE will meet
with success at the end of the road, as we’ve crossed paths with and eliminated all of our
major risks.

There are several factors that contributed to our success:

Our process. The creation of an early prototype made it easy for us to constantly
system test UGENE and prevent many major errors. Unit testing was hardly ever
required. We were able to learn as we went along, which allowed us to start the project
and accomplish a lot, even though at the beginning we had a very low understanding of
the problem space.

Our teamwork. Working side-by-side on most of the code, Leon and Jonathan
were able to produce code of a higher quality than either of us could have done alone. I
believe that this saved us a lot of rework. Working together also helped keep us both
motivated, a factor that is not to be underestimated. Also, SourceForge made it easier to
keep track of what needed to be done, and who was doing it. Even though other team
members did not contribute a lot to UGENE, the contributions that there were happened
because of SourceForge.

Our organisation. This goes beyond using SourceForge to organise team
members. Throughout the development process, we always had a good high-level
understanding of UGENE. This led to more focused development efforts, and better
expenditure of our very valuable and scarce resources. Documentation was a strength of
our project, rather than an annoyance and a weakness (as it is in so many other projects).

2.8 Coding Convention

We attempted to use a consistent coding convention throughout UGENE’s development.
Its specification can be found in the sub-sections to follow.

2.8.1 Indentation

The code should be indented according to its nesting level. An indent is four spaces. The
opening brace begins on the line after the control structure. Braces should always be
matched on the same indentation level.

Example:

Page 12 of 20

 if (x > 1)
 {
 if (y > 1)
 {
 cout << y;
 }
 else
 {
 cout << x;
 }
 }

2.8.2 Comments

Comments should contain information that is relevant to the code and that is not trivial or
obvious from the code itself. For example, adding a comment that mentions a function’s
parameter types and return value types is totally worthless (and yet we’ve seen this
numerous times in professional C code…).

In particular, functions and classes should have comments indicated what they do, and
how they work.

Function implementations should have comments indicating why they have been
programmed in a particular way. Comments must be high-level descriptions of the code
and the programmer’s thought process.

2.8.3 Header Files

The header file is the specification for a class and therefore needs to be well commented.

Each header file should begin with comments using the following structure:

Page 13 of 20

/***

 CLASS_NAME CLASS

 [[Description of a class’s purpose and capabilities.]]
--

 USAGE

[[Examples of using the class’s main functionality. This code
should be able to compile.]]

--

 EXCEPTION HANDLING

[[Mentions the errors that can occur and which exceptions will be
thrown.]]
--

 REVISION HISTORY

 Date Author Change
 ---- ------ ------

[[This is very important, as it gives us someone to blame, and
it’s also very, very useful for tracking progress]]
--

 TO DO

 [[Point form list of things left to change or add in this
class. It also contains ideas for this class design that need to
be considered.]]

***/

Page 14 of 20

2.8.4 Temporary Code

In an iterative process where a working prototype is being modified, it often becomes
necessary to add temporary “debug” code in places where it’s not necessarily supposed to
be. This can make it easier to perform an effective system test, for example.

All such temporary code should be bracketed as follows:

 // ###
 TemporaryCommand();
 // ###

2.8.5 Naming Conventions

Class Names
Class names should be nouns and should be descriptive.
All letters in a class name should be uppercase with words separated by underscores.

Example: UPPERCASE_WITH_UNDERSCORES

Constants
All letters in constants should be uppercase with words separated by underscores.

Example: UPPERCASE_WITH_UNDERSCORES

Variable Names
- This includes all types of variables.
- Variable names should be meaningful and descriptive.
- One-letter variables should be reserved for extremely short-lived variables such as

counters within loops.
- Variable names should start with a lower case letter and the first letter of internal

words should be capitalized.

Example: firstWordLowercaseButInternalWordsCapitalized

Pointers
These variables follow the standard variable naming convention except they start with
“p”. Note: The first word after the “p” is uppercase, since this is considered the first
word.

Example: pSameAsOtherVariables

Page 15 of 20

Class Member Variables
These variables follow the standard variable naming convention except they start with
“m_”. Note: The first word after the “m_” is lowercase.

Example: m_sameAsOtherVariables

Class Member Pointers
These variables follow the standard variable naming convention except they start with
“p_”. Note: The first word after the “p_” is lowercase.

Example: p_sameAsOtherMemberVariables

Class Member Functions
- The name of a method should be or start with a verb that is descriptive of the

action performed by the method.
- Method names should start with an uppercase letter and the first letter of internal

words should be uppercase.
- If a member function accepts zero parameters, do not add a void between the

function’s parentheses.

Example: AllWordsUppercase()

Page 16 of 20

3 User Manual
UGENE’s primary user, the Developer, is expected to have technical expertise with C++.
Therefore, this user manual will be written with that in mind. It will be difficult to
describe UGENE’s user interface, given that it doesn’t really have one. However, we will
do our best. Understanding UGENE’s UI means understanding its Developer Use-Cases.
There are three that are applicable: Create Application, Create an API, and Construct
Panels.

3.1 Create Application

In particular, the first step of this Use-Case, “Create a Back-End for the Application”,
needs to be discussed. We expect that Developers will:

• Not modify the View in any way whatsoever.
• Add whatever functionality they feel is necessary to the CONTROLLER and

MODEL, without modifying any of the pre-included functions. This of course
includes the ability to add new sub-classes.

We can’t say any more than that about this Use-Case, except that Developers have
complete freedom to develop whatever sort of Application logic and data representation
they wish.

3.2 Create an API

The procedure is slightly different for the CONTROLLER and MODEL. Each will be
described in turn.

3.2.1 Create a CONTROLLER API

Once a new function is created, the Developer will be able to write HLCs or the same
name directly into the Panel configuration files. There are three steps involved (refer to
Figure 2):

1. Create a declaration in the CONTROLLER declaration for the function that will
dispatch a High-Level Command.

2. Write the function, accessing the MODEL or VIEW as necessary.
3. Add the newly written function to the Function Factory.

Page 17 of 20

//declaration in CONTROLLER header file
void AddPicture1i(const COMMAND& parameters);

//implementation
void CONTROLLER::AddPicture1i(const COMMAND& parameters)
{
 //First, make sure that our vector contains the correct number
 of parameters
 if ((parameters.size()-1) != 1) //expecting 1 parameter (the

 size-1 is because we're ignoring the first entry)
 throw EXCEPTION("CONTROLLER::AddPicture: Incorrect number

of parameters received");

 //Second, extract the parameter(s)
 int numOfPicturesToAdd = UGENE::StringToInt(parameters[1]);

 //Third, perform the action
 p_model->AddPictures(numOfPicturesToAdd);
}

//imlementation
void CONTROLLER::InitializeFunctionList()
{
 m_functionList["Setup0"] = CONTROLLER::Setup0;
 m_functionList["AddPicture1i"] = CONTROLLER::AddPicture1i;
 m_functionList["RemovePicture1i"] = CONTROLLER::RemovePicture1i;
 m_functionList["LoadNewPanel1s"] = CONTROLLER::LoadNewPanel1s;
}

Figure 2: Sample CONTROLLER API

3.2.2 Create a MODEL API

Once a new function has been created, Widgets inside the Panel configuration file will be
able to subscribe to the MODEL in order to obtain dynamic information. There are three
steps involved:

1. Create a const declaration in the MODEL declaration for the function that will
return the subscription.

2. Write the function, accessing only const MODEL functions.
3. Add the newly written function to the Function Factory.

Refer to Figure 3:

Page 18 of 20

//declaration in MODEL header file
std::string GetNumberOfPicturesMessage0(const SUBSCRIPTION& parameters) const;

//implementation
std::string MODEL::GetNumberOfPicturesMessage0(const SUBSCRIPTION&
parameters) const
{
 return (UGENE::IntToString(GetNumberOfPictures()));
}

void MODEL::InitializeFunctionList()
{
 m_functionList["GetRandomInt"] = MODEL::GetRandomInt;
 m_functionList["GetRandomFloat"] = MODEL::GetRandomFloat;
 m_functionList["GetRandomFloat2i"] = MODEL::GetRandomFloat2i;
 m_functionList["GetNumberOfPicturesMessage0"] =
 MODEL::GetNumberOfPicturesMessage0;
}

Figure 3: Sample MODEL API

3.3 Construct Panels

Now here is the most interesting part of the whole process. Once the appropriate API has
been created inside the CONTROLLER and MODEL, then it can be used from inside the
Panel configuration files. These files are loaded at runtime, and the best part is that
UGENE’s components don’t even know or care which API functions get called from
within the Panel files.

Each Panel configuration file represents one screen’s worth of information. Loading a
new screen means loading a new Panel file. The Developer is expected to configure the
Widgets that are to be displayed, as well as any other desired characteristics of the screen.
At the time of this writing the only functional part of the Panel files is widget loading and
initialization scripts, thus we will concentrate on these.

3.3.1 The Guts of the Panel Configuration File

The discussion to follow is probably already out of date when you’re reading this
document, since Widgets and Panel configurations are a part of UGENE that is currently
in great flux. However, this will give you a good idea of what is going on.

It is best to start with a sample Panel configuration file (Figure 4), and then describe the
example.

Page 19 of 20

UGENE_PANEL_FILE

START_INIT_SCRIPT
 Setup0
END

START_WIDGET_LIST
 widgetName = PlusButton
 widgetType = BUTTON
 width = 10.0f
 height = 10.0f
 depth = 0.0f
 x = >GetButtonX
 y = >GetButtonY
 z = >GetButtonZ
 enabledImage = Images\PlusEnabled.gif
 disabledImage = Images\PlusEnabled.gif
 mouseOverImage = Images\PlusMouseover.gif
 pressedImage = Images\PlusPressed.gif
 releasedMessage = AddPicture1i 1
 releasedShiftMessage = AddPicture1i 10
 releasedControlMessage = AddPicture1i 100
 ;
 widgetName = GoToOtherScreen
 widgetType = BUTTON
 width = 20.0f
 height = 20.0f
 depth = 0.0f
 x = 80.0f
 y = 80.0f
 z = 0.0f
 enabledImage = Images\nextPanel.png
 disabledImage = Images\nextPanel_noAccess.png
 mouseOverImage = Images\nextPanel_checked.png
 pressedImage = Images\nextPanel_puke.png
 releasedMessage = LoadNewPanel1s PanelDefault.txt
 ;
END

Figure 4: Sample Panel Configuration File

Page 20 of 20

There are a lot of points that need to be covered regarding Panel configuration files:

• White space, including tabs and spaces, is ignored.
• The carriage return is used to separate unrelated statements, but excess carriage

returns are ignored.
• Comments will be allowed, but have not been implemented yet.
• Panel files begin with the statement UGENE_PANEL_FILE. This is the Panel

file’s “magic number,” that identifies the file type.
• In the future the files will also include a version number, to help manage

UGENE’s growth.
• Panel files are composed of a series of sections, which can be written in any

arbitrary order, but that must not overlap. Some sections may be dependant on the
existence of other sections (e.g. when defining Widget groups).

• Sections begin with a “start” tag, and finish with the END tag.
• Within sections, sub-sections are separated by a single semicolon alone on a line.
• The START_INIT_SCRIPT section contains a series of HLCs to run, one after

the other, each placed on a new line.
• The START_WIDGET_LIST section contains a series of Widgets, separated by

semicolons.
• Note how Widget attributes are assigned with an ‘=’ character. White space on

either side of the symbol is ignored. Entries are written one per line.
• Notice the Observer-Subscriber pattern at work in the PlusButton Widget, in

the function calls such as >GetButtonZ. The > before the function call allows
the parser to recognize the difference between a function call and a string.

• Notice the Command pattern at work in the various releasedMessage
attributes.

3.3.2 Apology Regarding Widget Specifications

In the future, we will be able to specify the details of what widgets are available, as well
as what attributes they have. Right now, however, anything we would write could change
tomorrow; hence we don’t feel that it would be productive at this time.

We hope that Figure 4 gives you a good idea of how UGENE is meant to operate.

